Astrophysics and Geophysics ## Radioactivity in Supernova Remnants Wesley T. Ryle^a, Dr. Mark Leising*^b ^aDept. of Physics and Astronomy Western Kentucky University 1 Big Red Way Bowling Green, KY 42101 Email: rylewt@wku.edu bDept. of Physics and Astronomy Clemson University Clemson, SC 29634 ## **ABSTRACT** The mechanics of stellar nucleosynthesis have become a highly developed science, yet many key details still remain unknown. A direct method for tracing elemental abundance created through supernovae involves the measure of X-ray flux from radioactive isotopes formed in a supernovae explosion. In this case, Chandra X-ray Observatory data was used to measure the fluxes from ⁵⁹Ni and ⁴⁴Ti, in the Tycho supernova remnant (SNR) and the Cas A SNR, respectively. Using CIAO data analysis software, upper limits for the flux of the 6.90 keV ⁵⁹Ni line and 4.09 keV ⁴⁴Ti were found at ^{-4.4+/-4.6} x 10⁻⁶ and 4.6+/-2.7 x 10⁻⁵ photons/cm²/s respectively. These small fluxes correspond well to theoretical values and can be used to justify further studies with increased exposure time and sensitivity.